Bienvenue aux Mines Paristech
Bienvenue à MINES ParisTech
Newsletter International
Website
Théorie & Pratique
Vous êtes

webTV

Lecture

Modéliser pour préparer l'expérience

Lecture

Créer de la musique à partir de gestes dans l'espace

Lecture

Electromagnetic forming process for metallic pieces

Lecture

David Ryckelynck | Entretiens de Toulouse 2015

Lecture

L'intégration du stockage dans un réseau électrique durable

+ Toutes les vidéos

Partager

Guillaume OZOUF - Soutenance de thèse MINES ParisTech

Guillaume OZOUF

Electrodes à base d'aérogels de SnO2, résistantes à la corrosion pour la réduction de l'oxygène dans les piles à combustible à membrane échangeuse de protons (PEMFC)

Titre anglais : Corrosion resistive tin oxide aerogels based electrodes for the oxygen reduction reaction in proton exchange membrane fuel cells (PEMFC)
Date de soutenance : 13/03/17
Directeur de thèse : Christian BEAUGER

Mots clés en français : Electrodes,pile à combustible,PEMFC,matériaux nanostructurés,oxydes métalliques,dopage
Mots clés en anglais : Electrode,fuel cell,PEMFC,nanostructured materials,metal oxides,doping

Résumé de la thèse en français
Afin d'augmenter la durabilité des PEMFC, des aérogels de dioxyde d'étain ont été étudiés pour remplacer le carbone comme support de catalyseur cathodique. SnO2 est un semi-conducteur de type n dont la conductivité électronique peut être améliorée en le dopant par des cations hypervalents tels que Nb5+, Ta5+ ou Sb5+. Pour être un support de catalyseur efficace, le matériau doit aussi posséder une surface spécifique élevée avec une morphologie mésoporeuse pour permettre à la fois la dispersion et l'activité du catalyseur (Pt). À cette fin, notre objectif était de développer des aérogels de SnO2 dopé. Dans cette étude, les aérogels ont été synthétisés par voie sol-gel en milieu acide à partir d'alcoxydes métalliques comme précurseurs. Nos matériaux présentent une morphologie aérée très intéressante avec une surface spécifique relativement élevée (80-90 m2/g). De plus, tous les aérogels SnO2 dopés au Sb ont présenté une amélioration très significative de la conductivité électronique pour atteindre une valeur d'environ 0,12 S/cm. Les nanoparticules de platine ont ensuite été déposées sur la surface de l'aérogel SnO2 dopé Sb en utilisant trois méthodes différentes. La méthode basée sur la réduction chimique par l'intermédiaire d'un polyol fournit le meilleur résultat en terme d'activité catalytique massique, mesurée en électrode à disque tournant (Is = 32 mA/mgPt). Cette valeur est, par ailleurs, encore plus élevée que celle de l'électrocatalyseur TEC10E40E (Is = 27 mA/mgPt). Les AMEs intégrant notre aérogel SnO2 dopé au Sb ont enfin montré une très bonne durabilité à des potentiels élevés.

Résumé de la thèse en anglais
In order to tackle the problem of low durability, tin dioxide aerogels were studied to replace carbon black as a catalyst support in proton exchange membrane fuel cells (PEMFCs). SnO2 is a well-known n-type semi-conductor whose electronic conductivity can be improved by doping with hypervalent cations such as Nb5+, Ta5+ or Sb5+. In addition, as a catalyst support, this material has to develop a high specific surface area with adequate mesoporous morphology to allow both good dispersion and activity of the catalyst (Pt). To this end, our objective was to develop doped SnO2 aerogels. In this study, SnO2 based-aerogels were successfully synthesized following an acid-catalyzed sol–gel route starting with metal alkoxides as precursors. Our materials have shown a very interesting airy morphology with among other a reasonable specific surface area (80–90 m2/g). Moreover, all Sb-doped aerogels exhibited significant improvement in electronic conductivity and reach a value of around 0.12 S/cm. Platinum nanoparticles were then deposed on the Sb doped SnO2 aerogel surface using three different methods. The method based on chemical reduction using a polyol route provided the best result in term of mass catalytic activity measured by RDE (Is = 32 mA/mgPt). This value is even higher than that of the reference electrocatalyst TEC10E40E (Is = 27 mA/mgPt). Sb doped SnO2 aerogel based MEAs have exhibited a very good durability at high potentials.

Retour à l'annuaire des docteurs

actualité

Recherche : l'École dans le Top 500 mondial

Formation Recherche : l'École dans le Top 500 mondial Publié chaque année au mois d'août, depuis 2003, le…
> En savoir +

Le Rapport d'activité 2016 est en ligne

Formation Le Rapport d'activité 2016 est en ligne C'est par un éditorial à deux voix que s'ouvre le…
> En savoir +

Des conditions d'études optimales

Formation Des conditions d'études optimales Un faible "ratio étudiants / personnels encadrants" peut…
> En savoir +

Les matériaux à l'honneur

Formation Les matériaux à l'honneur Le Prix Bodycote de la SF2M récompense deux jeunes docteurs de l'École. La SF2M…
> En savoir +

Deux prix CSMA en

Formation Deux prix CSMA en "calcul des structures" Lors du 13 e colloque national en calcul des structures , à…
> En savoir +

+ Toutes les actualités

contact

Régine MOLINS
Direction de l'Enseignement
Service du Doctorat
> envoyer un mail

Plan du site
MINES
ParisTech

60, Boulevard Saint-Michel
75272 PARIS Cedex 06
Tél. : +33 1 40 51 90 00

Implantations
Formation
Mentions légales | efil.fr | ©2012 MINES ParisTech | +33 1 40 51 90 00 |