Bienvenue aux Mines Paristech
Bienvenue à MINES ParisTech
Newsletter International
Website
Théorie & Pratique
Vous êtes

webTV

Lecture

Aftermovie du H4ck@mines 2019 MINES ParisTech

Lecture

MIG 2019 - Systèmes embarqués

Lecture

Teaser Journées Portes Ouvertes

Lecture

Season's Greetings - Meilleurs voeux 2019

Lecture

Plan stratégique de l'Ecole

+ Toutes les vidéos

Partager

Basava Raju AKULA - Soutenance de thèse MINES ParisTech

Basava Raju AKULA

Une extension de la méthode mortar pour application aux contacts et au couplage de maillages

Titre anglais : Extended mortar method for contact and mesh-tying applications
Date de soutenance : 04/02/19
Directeur de thèse : Georges CAILLETAUD

Mots clés en français : les méthodes Mortar,problèmes de contact,couplage des maillages,
Mots clés en anglais : the Mortar methods,contact problems,mesh-tying,

Résumé de la thèse en français
Cette thèse a pour but de développer un ensemble de méthodes permettant de gérer les problèmes de contact et de couplage de maillages dans le cadre de la méthode des éléments finis classiques et étendus. Ces problèmes d'interfaces sont traités le long de surfaces réelles et virtuelles, dites “surfaces immergées”. Le premier objectif est d'élaborer une formulation de Mortar tridimensionnelle, efficace et parfaitement cohérente en utilisant la méthode du Lagrangien augmenté monolithique (ALM) pour traiter les problèmes de contact et de frottement. Cet objectif est réalisé dans le cadre de la méthode des éléments finis classique. Divers aspects du traitement numérique du contact sont discutés : la détection, la discrétisation, l'évaluation précise des intégrales de Mortar (projections, découpage, triangulation), la parallélisation du traitement sur des architectures parallèles à mémoire distribuée et l'optimisation de la convergence pour les problèmes impliquant à la fois le contact/frottement et les non-linéarités de comportement des matériaux. Grâce aux formulations de Mortar tirées des méthodes de décomposition de domaines, les problèmes de couplage de maillage pour la classe des interfaces non-compatibles sont également présentés. En outre, une nouvelle méthode numérique a été élaborée en 2D : nous la dénommons “MorteX”, car elle rassemble à la fois des fonctionnalités de la méthode Mortar et de la méthode X-FEM (méthode des éléments finis étendus). Dans ce cas, le couplage des maillages entre des domaines qui se chevauchent ainsi que le contact frottant entre des surfaces réelles d'un solide et certaines surfaces immergées au sein du maillage d'un autre corps peuvent être traités efficacement. Cependant, la gestion du couplage/contact entre des géométries non conformes à l'aide de surfaces immergées pose des problèmes de stabilité numérique. Nous avons donc proposé une technique de stabilisation qui consiste à introduire une interpolation des multiplicateurs de Lagrange à grains grossiers. Cette technique a été testée avec succès sur des “patch-tests” classiques et elle s'est également avérée utile pour les méthodes Mortar classiques, ce qui est illustré par plusieurs exemples pratiques. La méthode MorteX est aussi utilisée pour traiter des problèmes d'usure en fretting. Dans ce cas, l'évolution des surfaces de contact qui résulte de l'enlèvement de matière dû à l'usure est modélisée comme une évolution de surface virtuelle qui se propage au sein du maillage existant. L'utilisation de la méthode MorteX élimine donc le besoin de recourir aux techniques complexes de remaillage. Les méthodes proposées sont développées et implémentées dans le logiciel éléments finis Z-set. De nombreux exemples numériques ont été considérés pour valider la mise en œuvre et démontrer la robustesse, la performance et la précision des méthodes Mortar et MorteX.

Résumé de la thèse en anglais
In this work we develop a set of methods to handle tying and contact problems along real and virtual (embedded) surfaces in the framework of the finite element method. The first objective is to elaborate an efficient and fully consistent three-dimensional mortar formulation using the monolithic augmented Lagrangian method (ALM) to treat frictional contact problems. Various aspects of the numerical treatment of contact are discussed: detection, discretization, accurate evaluation of mortar integrals (projections, clipping, triangulation), the parallelization on distributed memory architectures and optimization of convergence for problems involving both contact and material non-linearities. With mortar methods being drawn from the domain decomposition methods, the mesh tying problems for the class on non-matching interfaces is also presented. A new two-dimensional MorteX framework, which combines features of the extended finite element method (X-FEM) and the classical mortar methods is elaborated. Within this framework, mesh tying between overlapping domains and contact between embedded (virtual) boundaries can be treated. However, in this setting, severe manifestation of mesh locking phenomenon can take place under specific problem settings both for tying and contact. Stabilization techniques such as automatic triangulation of blending elements and coarse-grained Lagrange multiplier spaces are proposed to overcome these adverse effects. In addition, the coarse graining of Lagrange multipliers was proven to be useful for classical mortar methods, which is illustrated with relevant numerical examples. The MorteX framework is used to treat frictional wear problems. Within this framework the contact surface evolution as a result of material removal due to wear is modeled as an evolving virtual surface. Use of MorteX method circumvents the need for complex remeshing techniques to account for contact surface evolution. The proposed methods are developed and implemented in the in-house finite element suite Z-set. Numerous numerical examples are considered to validate the implementation and demonstrate the robustness, performance and accuracy of the proposed methods.

Retour à l'annuaire des docteurs

actualité

Comment renforcer l'autonomie des salariés ?

Formation Comment renforcer l'autonomie des salariés ? Des entreprises toujours plus nombreuses souhaitent…
> En savoir +

MINES ParisTech sur le podium

Formation MINES ParisTech sur le podium Le Figaro Étudiant réalise un nouveau classement des…
> En savoir +

Doublé de thèses

Formation Doublé de thèses Un rare doublé de thèses au Centre de recherche en informatique (CRI) de MINES…
> En savoir +

Femmes dans la transition énergétique

Formation Femmes dans la transition énergétique « J'appelle toutes les #WomenInEnergy à prendre…
> En savoir +

La rénovation thermique réduit-elle vraiment votre facture d'énergie ?

Formation La rénovation thermique réduit-elle vraiment votre… La rénovation énergétique est l’un des piliers de…
> En savoir +

+ Toutes les actualités

contact

Régine MOLINS
Direction de l'Enseignement
Service du Doctorat
> envoyer un mail

Plan du site
MINES
ParisTech

60, Boulevard Saint-Michel
75272 PARIS Cedex 06
Tél. : +33 1 40 51 90 00

Implantations
Mentions légales | efil.fr | ©2012 MINES ParisTech | +33 1 40 51 90 00 |