Bienvenue aux Mines Paristech
Bienvenue à MINES ParisTech
Newsletter International
Website
Théorie & Pratique
Vous êtes

webTV

Lecture

Aftermovie du H4ck@mines 2019 MINES ParisTech

Lecture

MIG 2019 - Systèmes embarqués

Lecture

Teaser Journées Portes Ouvertes

Lecture

Season's Greetings - Meilleurs voeux 2019

Lecture

Plan stratégique de l'Ecole

+ Toutes les vidéos

Partager

Sahng Hyuck WOO - Soutenance de thèse MINES ParisTech

Sahng Hyuck WOO

Membranes composites acide perfluorosulfonique (PFSA)/argile pour un fonctionnement à faible humidité relative et haute température des piles à combustible à membrane échangeuse de protons (PEMFC)

Titre anglais : Perfluorosulfonic acid (PFSA)/nanoclay composite membranes as low relative humidity and intermediate temperature electrolytes for proton exchange membrane fuel cell (PEMFC)
Date de soutenance : 21/06/19
Directeurs de thèse : Christian BEAUGER, Arnaud RIGACCI

Mots clés en français : composites,argiles,fonctionnalisation,PEMFC,fuel cell,
Mots clés en anglais : composites,functionalization,nanoclays,fuel cell,PEMFC,

Résumé de la thèse en français
Cette thèse introduit de nouvelles membranes électrolytiques pouvant fonctionner à faible humidité relative (inférieure à 50%) et à une température intermédiaire, c'est-à-dire 90°C voire au-delà. Plus spécifiquement, la thèse tire profit de l'hygroscopicité de la morphologie d'argiles naturelles, lasépiolite microfibreuse et l'halloysite tubulaire . Ces nanoargiles ont été intégrées à des suspensions de Nafion® ou Aquivion pour préparer des membranes composites. Elles ont été fonctionnalisées et prétraitées pour les rendre conductrices protoniques et améliorer leur compatibilité avec les matrices perfluorosulfoniques utilisés. Ces argiles ont d'abord été caractérisées avant leur incorporation dans la matrice polymère : ATR-FTIR (spectroscopie infrarouge à transformée de Fourier totale atténuée), Py-GC/MS (spectrométrie de masse par chromatographie en phase gazeuse à pyrolyse) et ATG (analyse thermogravimétrique). Les propriétés des nanoargiles prétraitées ont enfin été caractérisées par XRD (diffraction des rayons X) et EDS. Les membranes composites préparées ont ensuite été caractérisées pour la conductivité protonique, l'absorption d'eau, le gonflement, la résistance thermomécanique et la stabilité chimique. L'état de dispersion des argiles à l'intérieur de la phase de polymère a été observé par SEM/EDS (microscopie électronique à balayage à émission de champ / spectroscopie à rayons X à dispersion d'énergie). La stabilité chimique vis-à-vis de l'attaque radicale contre les membranes composites a été étudiée par mesure de la formation d'ions fluorure (F-). La conductivité protonique des membranes composites a également été calculée à partir des résistances mesurées dans dans une large gamme d'humidités relatives et de températures. Des mesures thermomécaniques par analyse mécanique dynamique ont montré que la morphologie allongée particulière des argiles choisies participe à l'amélioration des propriétés mécaniques des membranes composites tout en réduisant le taux de gonflement. Les performances en assemblage membrane électrodes ont été évaluées pour mettre en évidence l'avantage de la présence de ces nanoargiles dans les membranes composites en ce qui concerne l'humidité relative du gaz d'alimentation, la température de fonctionnement de la cellule et la perméation à l'hydrogène. Des résumés détaillés comprenant les principaux résultats ont été fournis au début de chaque chapitre.

Résumé de la thèse en anglais
This thesis introduces novel electrolyte membranes which can be operated at low relative humidity (below 50%) and intermediate temperature, i.e., 90?. More specifically, the thesis takes benefit from hygroscopicity of microfibrous SEP (sepiolite) and tubular HNT (halloysite). Changes in Nafion membrane properties with blending time were studied. Moreover, these nanoclays are functionalized and pretreated to make them proton conductive and to improve their compatibility with short-side-chain PFSA (perfluorosulfonic acid) composite membranes based on Aquivion. To begin with, functionalized and pretreated clay nanoparticles are characterized prior to incorporation in polymer matrix: ATR-FTIR (attenuated total reflection-fourier transform infrared spectroscopy), Py-GC/MS (pyrolysis gas chromatography mass spectrometry), and TGA (thermogravimetric analysis). Composites membranes have them been prepared and characterized for proton conductivity, water uptake, swelling, thermo-mechanical strength and chemical stability. The dispersion state of SEP and HNT inside polymer phase was observed using SEM/EDS (field emission scanning electron microscopy/Energy dispersive X-ray spectroscopy). The properties of pretreated nanoclays are characterized using XRD (X-ray diffraction) and EDS. Chemical stability regarding radical attack against composite membranes is clarified using Ion meter through fluoride ion (F-) analysis. Proton conductivity of composite membranes is also measured under condition of different relative humidity and temperature. Following this, it is demonstrated by DMA (dynamic mechanical analysis) results that the particular elongated morphology of SEPs and HNTs participates to improving mechanical property of the composite membranes with decreased swelling ratio. MEAs (membrane electrode assembly) performance are evaluated to understand the advantage of the presence of nanoclays in the composite membranes regarding the relative humidity of the feeding gas, the operating temperature of the cell, and the hydrogen crossover. Detailed abstracts including main results were provided at the beginning of each chapter.

Retour à l'annuaire des docteurs

actualité

Comment renforcer l'autonomie des salariés ?

Formation Comment renforcer l'autonomie des salariés ? Des entreprises toujours plus nombreuses souhaitent…
> En savoir +

MINES ParisTech sur le podium

Formation MINES ParisTech sur le podium Le Figaro Étudiant réalise un nouveau classement des…
> En savoir +

Doublé de thèses

Formation Doublé de thèses Un rare doublé de thèses au Centre de recherche en informatique (CRI) de MINES…
> En savoir +

Femmes dans la transition énergétique

Formation Femmes dans la transition énergétique « J'appelle toutes les #WomenInEnergy à prendre…
> En savoir +

La rénovation thermique réduit-elle vraiment votre facture d'énergie ?

Formation La rénovation thermique réduit-elle vraiment votre… La rénovation énergétique est l’un des piliers de…
> En savoir +

+ Toutes les actualités

contact

Régine MOLINS
Direction de l'Enseignement
Service du Doctorat
> envoyer un mail

Plan du site
MINES
ParisTech

60, Boulevard Saint-Michel
75272 PARIS Cedex 06
Tél. : +33 1 40 51 90 00

Implantations
Mentions légales | efil.fr | ©2012 MINES ParisTech | +33 1 40 51 90 00 |